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Abstract

Representing images and videos by covariance features
and leveraging the inherent manifold structure of symmetric
positive definite (SPD) matrices leads to enhanced perfor-
mances in various visual recognition tasks. However, when
covariance features are used to represent image-sets, the re-
sult is often rank-deficient. Thus, most existing approaches
adhere to blind perturbation with predefined regularizers
just to be able to employ inference tools.

To overcome this problem, we introduce novel similar-
ity measures specifically designed for rank-deficient covari-
ance features, i.e., symmetric positive semi-definite (SPSD)
matrices. In particular, we derive positive definite kernels
that can be decomposed into the kernels on the cone of SPD
matrices and kernels on the Grassmannian manifold. Using
the standard test protocols, our method achieves superior
results for image set classification on YouTube Celebrities,
Cambridge Hand Gesture, and Maryland Dynamic Scene
benchmarks.

1. Introduction
Symmetric positive semi-definite (SPSD) matrices nat-

urally arise for applications where the number of observed
samples is lower than the dimensionality of the samples,
and a covariance matrix is used to represent the observa-
tions. One such application is image set classification where
each set contains a number of images that belong to the
same class. Compared to single image based classifica-
tion, recognition from image sets has a significant advan-
tage of efficiently exemplifying intra-class appearance vari-
ations such as pose changes, illumination differences, par-
tial occlusions and object deformations through multiple
representatives [7, 19]. Therefore, proper modeling of im-
age sets permits utilizing intra-class variation in the set as
a complementary cue, thus enables discriminative represen-
tations [26].

Covariance features provide rich yet compact represen-
tations for image set modeling as they allow fusing various

Figure 1: Recognition performance of a conventional NN classifier
using full rank matrices by regularizing the rank-deficient covari-
ance feature. As seen, the performance changes drastically from
15% to 82% for different values of the regularization parameter ε.

image cues while attenuating the impact of noisy samples
through their averaging process [36, 12]. Moreover, mod-
ern inference frameworks [11, 9, 5, 37, 10] are available for
symmetric positive definite (SPD) matrices.

An SPSD matrix is a result of constructing a covariance
feature for an image set by arranging the d-dimensional vec-
tor descriptors of p images into the columns of a tall matrix
X of size d × p. Since the dimensionality of the image
descriptor is often several orders of magnitude greater than
the number of images, i.e. p � d, the covariance feature
constructed from the set is a rank-deficient SPSD matrix.

An important issue here is that, most of the existing
tools developed upon the manifold of SPD matrices includ-
ing its natural metric, distance measures, and statistics are
only valid for full-rank matrices. Hence, previous stud-
ies [36, 17] adhere to ad-hoc solutions to overcome the rank
deficiency by perturbing the rank-deficient covariance ma-
trix C with a constant regularizer, e.g. C + εId adding a
scaled identity matrix Id. Such a regularization nonetheless
may deteriorate the performance as shown in Figure 1. This
is a very practical, albeit overlooked, problem lacking of a
competent solution.

In this paper, we overcome the above issue with novel
methods by proposing a negative definite distance metric
(see Sec.4.1) inspired by the indefinite closeness measure
[5], and incorporating into positive definite kernels for im-
age set classification task. The proposed negative definite
metric enjoys several desirable properties (e.g., invariance
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Figure 2: A conceptual example of our proposed image set repre-
sentation. Image set is represented by an SPSD matrix A which is
further decomposed to a linear subspace U and an SPD matrix R.

to rotation) and is constituted of two parts, a linear subspace
and a smaller SPD matrix (see Figure 2 for a conceptual il-
lustration).

We then turn our attention to derive positive definite ker-
nels including linear, polynomial, Laplace, and RBF, based
on the negative definite metric. For this, we make embed the
curved product space of Gpd and Sp++ to the space of sym-
metric matrices obtained via the projection distance [15]
and the log-Euclidean distance [3], respectively. Subse-
quently, as a classifier we use kernel Discriminant Anal-
ysis (kDA) [27] that employs the kernel trick to perform
linear discriminant analysis in a high-dimensional feature
space in order to extract the significant nonlinear features
which maximize the between-class variance and minimize
the within-class variance. In other words, we generalize dis-
criminative power of kDA to the manifold of SPSD matri-
ces.

Our experiments demonstrate the superiority of the pro-
posed methods against several baseline and state-of-the-art
methods. To the best of our knowledge, using the standard
testing protocol, our method with the proposed kernels ob-
tained in this new geometry equipped with a kDA classi-
fier achieves the best reported results on standard image set
classification benchmarks: 72.8% for YouTube celebrities
face recognition [22], 91.1% for Cambridge hand gesture
recognition [24], and 90.0% for Maryland dynamic scene
recognition [33].

2. Related Work

Almost all image set classification techniques have to
make two major decisions: (i) how to represent an image
set, and (ii) what metric to use to measure the similarity
between sets.

From the representation point of view, existing solutions
can be divided roughly into model-driven and topology-
driven approaches. As for the model-driven methods such
as [25, 28]), it is usually assumed that the images within
a set are the samples from a known parametric form. The
notable examples include modeling sets by single Gaussian

distribution [32] and Gaussian Mixture Models (GMM) [2].
Once the model for each image-set is obtained, the similar-
ity between sets can be obtained either as the distance be-
tween models (e.g., Kullback-Leibler (KL) divergence be-
tween Gaussian models) or more directly as the distance
between the estimated parameters. The performance of
model-driven methods will deteriorate if the set data is
weakly correlated to the model.

To alleviate this difficulty, the topology-driven meth-
ods assume data establish a topological space and repre-
sent image sets by sophisticated nonlinear manifolds [23,
38, 15, 18, 37, 7]. Kim et al. in [23] learn a discrimi-
nant function that maximizes the canonical correlations of
within-class sets while minimizing the canonical correla-
tions of between-class sets. Then, image sets transformed
by the discriminant function are compared by the canonical
correlations with transformed subspaces. The sum of the
cosines of the principal angles have been successfully uti-
lized in [38] for image sets represented by linear subspaces.
Harandi et al. [18] propose a discriminant analysis approach
on Grassmannian manifolds, based on a graph embedding
framework. They show that by introducing within-class
and between-class similarity graphs to characterize intra-
class compactness and inter-class separability, the correct
geometrical structure of data can be exploited. Wang et
al. in [37] model image sets by their natural second-order
statistics, i.e., covariance matrices. Since nonsingular co-
variance matrices lie on a Riemannian manifold, a kernel
function is used to explicitly embed the Riemannian struc-
ture into a Euclidean space. Chen et al. [7] achieved im-
proved performances by computing the distance between
different locally linear subspaces. By taking the advantage
of the underlying geometrical structure, topology-driven
methods provide robustness to noise and can operate with
a relatively small number of samples per class.

Affine hull approaches [20, 6], on the other hand, adap-
tively choose optimal samples to obtain geometric distances
between image sets instead of considering the structure of
all data samples. As a consequence, they allow larger intra-
class variation, which results to a more general image set
modeling for challenging applications such as face recogni-
tion in the wild. Nevertheless, misclassification can occur
if the nearest points between two hulls are not correctly la-
beled.

In line with the methods that represent image sets on
some geometric surfaces, very recently Hayat et al. [19]
learn class-specific models by an Adaptive Deep Network
Template (ADNT). Based on the minimum reconstruction
error from the learned models, a majority voting strategy is
used for classification.

In practice, restricting the model or topology to obey
some form of predefined structure e.g. linear subspaces, sta-
tistical distributions, and etc. will result in loss of generality



and degraded performance.

3. Preliminaries
We compare against nearest-neighbor classifiers using

geodesic distances in the corresponding Riemannian man-
ifolds. Moreover, the closeness measure and our negative
definite distance metrics are derived upon the Riemannian
geometry. Hence, we briefly summarise basic Riemannian
concepts for completeness here.

Riemannian Manifold: A manifoldM is a topological
space which is locally homeomorphic to the d−dimensional
Euclidean space Rd, for some d called the dimensionality
of the manifold. The tangent space attached to a point X
on the manifold, TXM, is a vector space that consists of
the tangent vectors of all possible curves passing through
X . A Riemannian manifold is a differential manifold with
a metric defined on the tangent spaces.

SPD Manifold: The space of d × d SPD matrices en-
dowed with a Riemannian metric forms a Riemannian man-
ifold [30]. The affine invariant Riemannian metric (AIRM)
is the most popular choice to handle the non-Euclidean
structure of SPD matrices and is shown to be advantageous
for several applications [35]. For X ∈ Sd++ and two tan-
gent vectors ∆1,∆2 ∈ TXM, the AIRM is defined as

〈∆1,∆2〉X , 〈X−1/2∆1X
−1/2,X−1/2∆2X

−1/2〉
= Tr

(
X−1∆1X

−1∆2

)
. (1)

For two X,Y ∈ Sd++, the geodesic distance induced by
AIRM is

δg(X,Y ) = ‖ log(X−1/2Y X−1/2)‖F , (2)

where ‖.‖F denotes the Frobenius norm and log(·) is the
matrix principal logarithm.

In addition to AIRM, the log-Euclidean metric [3] δL :
Sd++×Sd++ → [0,∞) is widely used to measure similarities
on SPD manifolds. It is defined as

δL(X,Y ) , ‖ log(X)− log(Y )‖F , (3)

where ‖.‖F denotes the Frobenius norm and log(·) is the
matrix principal logarithm.

Grassmannian Manifold: The space of p-dimensional
linear subspaces of Rd for 0 < p < d is a Riemannian
manifold known as the Grassmannian Gpd [1]. A point
on the Grassmannian manifold Gpd might be specified by
an arbitrary d × p matrix with orthogonal columns, i.e.,
X ∈ Gpd ⇒ XTX = Ip. Such a point corresponds to a
subspace spanned by the columns of a d × p full rank ma-
trix and therefore is denoted by span(X).

For two tangents ∆1 and ∆2 atX the Riemannian metric
is defined as follows

〈∆1,∆2〉X = Tr
(
∆1

T∆2

)
. (4)

Using this, the geodesic distance between two pointsX and
Y is given by

δg(X,Y ) = ‖Θ‖2 , (5)

where Θ is the vector of principal angles betweenX , Y .
In addition to the geodesic distance, another popular dis-

tance in Gpd is the projection distance δP : Gpd × G
p
d →

R+ [16, 15] defined as

δ2P (X,Y ) = ‖XXT − Y Y T ‖2F , (6)

where ‖ · ‖F denotes the Frobenius norm. The projection
metric is related to the geometry of Grassmannian devel-
oped in [8]. Moreover, the length of any curve is the same
under δp and δg up to a scale of

√
2.

4. Riemannian Metric for SPSD Matrices
As mentioned earlier, computing the covariance features

from vectorized image features (i.e. raw intensity or any
other image descriptors such as histograms) results in rank-
deficient matrices due to the fact that the dimensionality
of the features is greater than the number of images in the
set. As a result, the covariance features become an instance
of SPSD matrices. We utilize the Riemannian metric for
SPSD matrices of fixed-rank introduced in [5] to handle
such covariance features. The metric addresses weaknesses
of the natural metric in SPD manifold in dealing with rank-
deficient matrices while enjoying several invariance prop-
erties. More specifically, the metric leads to a natural met-
ric with decoupled contributions in Grassmannian and SPD
manifolds.

Let I =
[
~I1|~I2| · · · |~Ip

]
, ~Ii ∈ Rd be a d × p matrix of

p observations. Then, the covariance feature C is formally
defined as

C =
1

p− 1

p∑
i=1

(~Ii − µ)(~Ii − µ)T , (7)

where µ = 1
p

∑p
i=1

~Ii is the sample mean of the observa-
tions.

When d > p, C is rank-deficient, which means that the
resulting matrix would be on the boundary of the positive
cone. As a result, one might totally dismiss the luxury of
computational tools in SPD manifold to analyse such co-
variance features. For instance, the distance from any SPD
matrix to C would be infinite according to the AIRM. To
overcome this issue, off-the-shelf treatment (for example
proposed in [37]) is through regularizing the originalC, i.e.,

C∗ = C + εId , (8)

where ε is a constant and Id is the d× d identity matrix.
As we will show in our experiments, the perturbation de-

teriorates the discriminatory power of covariance features.



Here, we are interested in taking the advantage of true ge-
ometry of the resulting covariance features. We commence
by deriving the natural metric and the geodesic distance for
SPSD matrices of fixed-rank and then turn our attention to
create valid kernels.

From quotient manifold perspective, points on Gpd are
yielded by grouping points on Steifel manifold Spd , the set of
d× p matrices with orthogonality constraint, that represent
the same subspace [1]. Therefore, Gpd admits the following
quotient manifold representation

Gpd ∼= S
p
d/Op , (9)

where Op denotes the orthogonal group in dimension p.
Let A ∈ Sd+(p), obtained for example from computing

the empirical covariance matrix of an image set. For any
such matrix, there exists the following decomposition

A = ZZT = (UR)(UR)T = UR2UT , (10)

where Z is a full-rank d × p matrix, U ∈ Spd , and R2 ∈
Sp++.

Eqn (10) remains unchanged under the transformation
Z → ZO for any matrix O ∈ Op. Thus, one can deduce
that the equivalence relation (U ,R2) ≡ (UO,OTR2O)
holds. As a result, the set Sd+(p) admits the the quotient
manifold representation Sd+(p) ∼=

(
Spd × S

p
++

)
/Op.

The metric proposed by [5] is defined to be the sum of
infinitesimal distances in Gpd and Sp++. Let 4 and D rep-
resent the tangent vectors in Grassmannian and SPD man-
ifolds, respectively. For Sd+(p) 3 A = UR2UT and two
pair of tangent vectors (41,D1) and (42,D2) the metric
is defined as

〈(41,D1),(42,D2)〉A := (11)

〈41,42〉+ λ〈R−1D1R
−1,R−1D2R

−1〉 ,

where 〈·, ·〉 denotes the normal inner product and λ ≥ 0 is
the combination weight.

Following Eqn (10), for two SPSD matrices A,B ∈
Sd+(p) we obtain A = UAR

2
AU

T
A and B = UBR

2
BU

T
B .

Then, the metric induces the following (squared) geodesic
distance betweenA andB

δ2g(A,B) = ‖Θ‖2F + λ‖ log(R−1A R2
BR

−1
A )‖2F , (12)

with λ ≥ 0. The chosen metric is simply the sum of in-
finitesimal distances in Gpd and Sp++. The first term refers to
the squared geodesic distance between linear subspacesUA

and UB while the second term is the squared geodesic dis-
tance between two SPD matrices R2

A and R2
B . Moreover,

the distance is invariant to angle preserving transformations
(i.e. orthogonal transformations, scalings, and pseudoinver-
sion). Here, our main motivation to benefit from the mani-
fold of SPSD matrices is to overcome the limitations of the

SPD manifolds in dealing with rank deficient matrices.As
will be demonstrated by our experiments, the induced ge-
ometry is more discriminative than both SPD and Grass-
mannian manifolds.

4.1. Kernels on SPSD Matrices

To define positive definite (pd) kernels on the SPSD
manifold, we first obtain a negative definite (nd) function
on Sd+(p).

Theorem 1. The function δ2 : Sd+(p) × Sd+(p) → R+ de-
fined as

δ2(A,B) , ‖UAU
T
A −UBU

T
B‖2F + λ‖ log(RA)− log(RB)‖2F

= 2p− 2‖UT
AUB‖2F + λ‖ log(RA)− log(RB)‖2F , (13)

is negative definite on Sd+(p) for λ ≥ 0.

Proof. We recall that a symmetric function ψ : X×X → R
on a set X is nd if and only if

∑n
i,j=1 cicjk(xi, xj) ≤ 0 for

any n ∈ N, xi ∈ X and ci ∈ R with
∑n
i=1 ci = 0. As

shown in [21], if f : X → H is a mapping from a set X
to an inner product space H, then the function ‖f(xi) −
f(xj)‖2H is negative definite for ∀xi, xj ∈ X . Here ‖ · ‖H
denotes the norm inH.

Now we note that πp : Gpd → Sym(d), πp(X) =

XXT is a mapping from the Grassmannian to the space
of d×d symmetric matrices, hence the first term on RHS of
Eqn. (13). Similarly, with log : Sp++ → Sym(p), the sec-
ond term in the RHS of Eqn. (13) is negative definite. By
invoking the definition of the negative definite kernels, it is
easy to see that the addition of two negative definite kernels
is also a negative definite kernel.

Having a nd function at our disposal, we can make use
of the following theorem to define a family of pd kernels on
Sd+(p).

Theorem 2 (Theorem 2.3 in Chapter 3 of [4]). Let µ
be a probability measure on the half line R+ and 0 <∫∞
0
tdµ(t) <∞. LetLµ be the Laplace transform of µ, i.e.,

Lµ(s) =
∫∞
0
e−tsdµ(t), s ∈ C+. Then, Lµ(βf) is posi-

tive definite for all β > 0 if and only if f : X ×X → R+ is
negative definite.

For example, by choosing µ to be the Dirac function at
t = 1, we obtain the RBF kernel on Sd+(p) as follows

kR(A,B) , (14)

exp
(
−β
(
λ‖ log(RA)−log(RB)‖2F−2‖UT

AUB‖2F
))

.

We notice that one could arrive to the same conclusion,
i.e., kR(·, ·) is pd, by observing that it is indeed the product
of two pd kernels. However, our approach here is more
principled and can be used to generate other types of pd



Figure 3: Examples of the YouTube celebrities dataset [22].

kernels on Sd+(p) by properly changing the measure µ in
Thm.2.

Another widely used kernel in the Euclidean spaces is
the Laplace kernel defined as k(x,y) = exp(−β‖x− y‖).
To obtain the Laplace kernel on the Sd+(p), we make use of
the following theorem for nd kernels.

Theorem 3 (Corollary 2.10 in Chapter 3 of [4]). If f : X ×
X → R is negative definite and satisfies f(x,x) = 0 then
so is ψα for 0 < α < 1

As a result both δ(·, ·) =
√
δ2(·, ·) is nd by choos-

ing α = 1/2 in Theorem 3 and hence the form of
exp(−βδ(·, ·)) is pd.

Before concluding this part, we also introduce the lin-
ear and polynomial kernels on Sd+(p). The linear kernel
kl(A,B) = ‖UT

AUB‖2F +λTr
(

log(RA) log(RB)
)

is in-
teresting as it is a parameter-less kernel (discarding λwhich
defines the form of the linear combination of the two). To
show that kl(·, ·) is pd, we note that kl(·, ·) is the summa-
tion of two pd kernels defined on the space of symmetric
matrices. This will lead us to define the polynomial kernels
as

kp(A,B) , (15)(
β + ‖UT

AUB‖2F + λTr
(

log(RA) log(RB)
))α

.

We show all kernels we introduced in Table 1.

5. Experiments
We present experiments on three benchmark image set

classification tasks. In all our experiments, we used a fea-
ture which suits the application. Notice that, our goal in this
work is not feature selection.

We utilized the log-Euclidean and the projection dis-
tance. We tested different classifiers: and relied on two dif-
ferent classifiers: a simple nearest neighbor (NN) classifier
to crystallize the benefits of using the proposed formulation
and a KDA based classifier with the positive definite kernels
we introduced in this paper. Different algorithms tested in
our experiments are referred to as

NN: Nearest Neighbour classifier using the geodesic dis-
tance.

KDALinear: KDA classifier with linear kernel.

KDAPolynomial: KDA classifier with polynomial kernel.

KDALaplace: KDA classifier with Laplace kernel.

KDARBF : KDA classifier with RBF kernel.

5.1. Video-Based Face Recognition

In our first experiment, we tackled the task of video-
based face recognition. To this end, we considered the
YouTube celebrity dataset [22] which contains 1910 videos
of 47 people (see Fig. 3 for a few examples). The large di-
versity of poses, illumination, and facial expressions in ad-
dition to high compression ratio of face images have made
it the most challenging dataset for image set classification
based face recognition.

For our evaluation, we followed the standard five-fold
cross validation protocol used in [20, 37, 19] which divides
the whole dataset equally (with minimum overlap) into five
folds with 9 videos per subject in each fold. Three of the
videos were randomly selected for training, while the re-
maining six were used for testing. We generated linear sub-
spaces of order 6 by grouping features of individual frames.

From each video, we extracted the face regions using the
tracker of Ross et al. [31]. We considered Local Binary
Patterns (LBP) [29] as our feature. Each face region was
divided into 2 × 2 distinct non-overlapping blocks and the
features were extracted for each patch and concatenated to
form the final frame descriptors. Therefore, each descriptor
belongs to S6++ and G6232 for the covariance features and
linear subspaces.

Table 2 summarizes the average recognition rates of all
the studied methods. Several conclusion can be drawn here.
First of all, we note that in all cases the new SPSD mani-
fold achieves descent accuracy scores.Furthermore, a single
RBF kernel in the SPSD manifold comfortably outperform
all the state-of-the-art algorithms. We achieve average ac-
curacy score of 72.8% which outperforms the closest com-
petitor by 1.4% percentage points.

5.2. Hand Gesture Recognition

We performed another experiment to classify image se-
quences of hand gestures. To this end, we used the Cam-
bridge hand gesture dataset [24] which contains 900 image
sets of 9 gesture classes with large intra-class variations.
The gestures are defined by 3 primitive hand shapes and 3
primitive motions (see Fig. 4 for examples). Therefore, the
target task for this data set is to classify different shapes as
well as different motions at a time.

We followed the experimental protocol suggested by
Mahmood et al. [26] in which 100 image sets of each class



Table 1: The proposed SPSD kernels.

Kernel Equation

Linear kl(A,B) = ‖UT
AUB‖2F + λTr

(
log(RA) log(RB)

)
Polynomial kp(A,B) =

(
β + ‖UT

AUB‖2F + λTr
(
log(RA) log(RB)

))α
Laplace kL(A,B) = exp

(
−β
√
λ‖ log(RA)−log(RB)‖2F−2‖U

T
AUB‖2F

)
RBF kR(A,B) = exp

(
−β
(
λ‖ log(RA)−log(RB)‖2F−2‖UT

AUB‖2F
))

Table 2: Recognition scores for the YouTube celebrities [22].

SANP 65.0 [20]
CDL 70.1 [36]
ADNT 71.4 [19]

NN 65.3
KDARBF 72.8
KDALaplace 71.8
KDAPolynomial 70.6
KDALinear 70.4

Figure 4: Examples of Cambridge hand gesture dataset [24].

Figure 5: Examples of the Maryland dynamic scene dataset [33].

Table 3: Recognition scores for the Cambridge hand gesture
dataset [24].

SANP 22.5 [20]
CDL 73.4 [36]
SSSC 83.1 [26]

NN 87.4
KDARBF 91.1
KDALaplace 89.3
KDAPolynomial 90.0
KDALinear 90.0

are divided into two parts, 81-100 used as train set and 1-80
as test set. For this dataset we made use of concatenated
HOG features of 2 × 2 blocks of each frame. The state-
of-the-art on this dataset [26] obtains the accuracy score of
83.1% using an ensemble of 9 spectral classifiers.

Table 3 shows that all the proposed methods comfortably
outperform the state-of-the-art algorithms. A KDA classi-
fier when the kernel is RBF over the SPSD manifold signif-
icantly outperforms the state-of-the-art ensemble of classi-
fiers [26]. The difference is 8 percentage points.

5.3. Dynamic Scene Recognition

Finally, we considered the task of scene recognition from
the videos using the Maryland ”In-The-Wild”dataset [33]
(see Fig. [24] for example classes). This dataset consists
of 130 videos of natural scenes spanning 13 categories (e.g.
Avalanche, Forest Fire, Waves) with 10 videos per class.
The videos are collected from Internet-based video hosting
sites, such as YouTube. Significant camera motions, dif-
ferences in appearance, frame rate, scale, viewpoint, scene
cuts, and illumination conditions exist in this dataset. A
leave-one-video-out experimental protocol is used for con-
sistency with previous evaluation in [14].

We made use of the FC7 features of Convolutional Neu-
ral Network (CNN) of Zhou et al. [39]. The network is
trained on the Places dataset [39] with 205 scene categories
and 2,5 millions of images with a category label. Here, we
extract the 4096 FC7 feature of each frame. We then reduce
the dimension of the feature to 400 using Principal Compo-
nent Analysis.

Results are reported in Table 4. The table is self explana-
tory. To the best of our knowledge, 77.7% classification ac-
curacy by the recent Bag of Spatiotemporal Energy (BoSE)
method of Feichtenhofer et al. [14] is the highest accuracy
score reported on this dataset. Our methods outperform the
BoSE by a very large support.

5.4. Sensitivity to Rank and Weighting Parameter

We also studied the sensitivity of our proposed approach
to the chosen subspace order as well as the value of λ. Fig-
ure 6 shows the accuracy against subspace order for the
Cambridge hand gesture dataset using the pixel intensities
as features and NN as classifier (i.e., using Eqn 12). As
depicted in the figure for all the studied subspace order the
accuracy of NN on the Grassmannian manifold is inferior
to the SPSD cases.

More importantly, we observed that as the order of the



Table 4: Recognition accuracies for the Maryland
dataset [33].

SFA 60.0 [34]
CSO 67.7 [13]
BoSE 77.7 [14]

NN 83.1
KDARBF 88.5
KDALaplace 82.3
KDAPolynomial 90.0
KDALinear 89.2

Figure 6: Accuracy against subspace order for the Cambridge hand
gesture dataset. As visible inclusion of the SPD term significantly
improves upon the use of Grassmannian only.

subspaces increases the differences between the accuracy
obtained on the Grassmannian drops significantly. In other
words, most values of the parameter λ provides a consis-
tently stable performance over a range of p values even if
the number of subspaces varies considerably. This clearly
justifies the use of SPSD matrices.

6. Conclusions
Inspired by the recent success of image set representa-

tion as points on nonlinear Riemannian manifolds, we pro-
posed Symmetric Positive Semi Definite (SPSD) matrices
as descriptors for image set classification. The challenge
lies in the fact that to measure the similarities, the usual met-
rics on the manifold of Symmetric Positive Definite (SPD)
matrices, such as the Affine Invariant Riemannian Metric
(AIRM), are not valid due to rank-deficiency of the SPSD
matrices. Hence, our main motivation to benefit from the
SPSD matrices is to overcome the limitations of the SPD
manifolds (rank deficiency being the most important one).

We made use of a metric than can be decomposed as
sum of infinitesimal distances on the Grassmannian mani-
fold and the manifold of SPD matrices. Since our formu-
lation enables us to utilize any distances on the two mani-
folds, we can integrate valid kernels for the image set clas-
sification task. A rigorous set of successful experiments
on several challenging applications including video-based

face recognition, gesture classification, and dynamic scene
recognition demonstrated the advantages of our method.
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